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The document presents our results on intra-host dynamics and immunity. In part 1 we present 

how antibody dynamics is associated with different covariates; in part 2 we present how intra-

host dynamics can be used to predict transmission and risk of severe disease in the context 

of nursing homes. 

Part 1: Prediction of antibody response in COVID-19 vaccinated 

individuals using nonlinear mixed-effects modeling 

An effective measure against infection is vaccination, which has been shown to provide strong 

protection against serious illness, hospitalization and death through production of anti-SARS-

CoV-2 antibodies. However, the response to vaccination differs widely between individuals and 

effects of different covariates on the dynamics of the antibody response remain poorly 

understood. Moreover, predictions about waning antibody titers are vital for the prevention of 

viral spread and COVID-19-related deaths. 

To this end, we employ two mathematical models of the antibody response in individuals that 

were vaccinated against COVID-19 [Clairon Q et al., 2023]. All reactions are expressed in a 

system of ordinary differential equations and the model is embedded in a nonlinear mixed-

effects modeling framework to best capture the inter-individual heterogeneity. Most parameters 

of our model are unknown and need to be estimated from available data, which was obtained 

from partners in WP5 [Leomanni et al., 2023]. The data is used to calibrate our model, predict 

antibody responses after vaccination and analyze the effect of different covariates on the 

dynamics of the antibody response. 

Thus, we provide a framework that can aid in furthering the mechanistic understanding of the 

antibody response following vaccination against SARS-CoV-2. Furthermore, it allows us to 

explain inter-individual heterogeneities that could lead to early waning of antibody titers and 

identify important factors influencing the immune response. 

 

1.1 Neural posterior estimation for nonlinear mixed-effects models 

The following section is based on a pre-print article by Arruda et al. [2023]. 

To facilitate scalable and flexible parameter estimation for NLME models, we developed and 

implemented an approach based on amortized machine learning. Established methods need 

a tractable likelihood and have high computational costs when the number of individuals is 

large. However, our machine learning approach allows inferring the parameters of nonlinear 

mixed-effects models with deterministic and stochastic mathematical models for a large 

number of individuals. Such models typically depend on unknown parameters 𝜙 such as 

reaction rates or initial concentrations, that need to be inferred from data. We assume that the 

underlying data generation process can be described via a mechanistic model ℳ(𝜙), 

incorporating dynamics, intrinsic sources of stochasticity, as well as measurement noise. In 
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this work, individuals are modeled using ordinary differential equations (ODE). We consider a 

set of measurements for each individual i, for example, measurements of the antibody 

response in COVID-19 vaccinated individuals. To account for population heterogeneity, we 

assume that each individual can be described by an individual-specific set of parameters, 

which consist of fixed effects 𝛽 shared across the population, and/or random effects b(i) 

specific to individuals. Taken together, this defines a non-linear mixed-effects (NLME) model, 

where the goal is to find the population parameters 𝜃 describing the fixed effects 𝛽 and the 

distribution of the random effects b(i) in the population. 

In this new machine learning approach, we employ neural posterior estimation to infer the 

population parameters from data, which occurs in three phases: (i) simulation using the 

mechanistic model ℳ(𝜙), (ii) training of an invertible neural network, and (iii) inference of the 

population parameters. In phase (i), samples are drawn from prior distributions of the 

parameters and simulated datasets are generated. Afterwards, the neural network is trained 

on a lower dimensional representation of the simulated data produced by a summary network 

that is simultaneously trained. After sufficiently long simulation and training phases with 

simulated data, we obtain a global approximation of the true posterior distribution from which 

we can efficiently draw samples conditioned on so far unseen data. In the amortized inference 

phase, we assume a population model and infer the population-level parameters θ using an 

approximation to the population likelihood. 

1.2 Antibody response model 

To describe the dynamics of the antibody response after vaccination against COVID-19, we 

employ an ordinary differential equation (ODE) model described in Clairon et al. [2023]. 

Shortly, injection of the vaccine 𝑉 triggers the production of memory cells 𝑀 at rate 𝑘𝑀. These 

can further differentiate to antibody secreting cells 𝑆 at rate 𝑘𝑆
𝑎𝑐𝑡 𝑉, which produce antibody 

𝐴𝑏 at rate 𝑘𝐴𝑏
𝑝𝑟𝑜𝑑

. 𝑉, 𝑆, and 𝐴𝑏 degrade at rates 𝑘𝑉
𝑑𝑒𝑔

, 𝑘𝑆
𝑑𝑒𝑔

, and 𝑘𝐴𝑏
𝑑𝑒𝑔

: 

𝑑𝑉/𝑑𝑡 =  −𝑘𝑉
𝑑𝑒𝑔

 𝑉 

𝑑𝑀/𝑑𝑡 =  𝑘𝑀 𝑉 −  𝑘𝑆
𝑎𝑐𝑡 𝑉 𝑀 

𝑑𝑆/𝑑𝑡 =  𝑘𝑆
𝑎𝑐𝑡 𝑉 𝑀 −  𝑘𝑆

𝑑𝑒𝑔
 𝑆 

𝑑𝐴𝑏/𝑑𝑡 =  𝑘𝐴𝑏
𝑝𝑟𝑜𝑑

 𝑆 −  𝑘𝐴𝑏
𝑑𝑒𝑔

 𝐴𝑏 

Since measuring only the antibodies leads to non-identifiability of the model [Clairon et al.], we 

derived a smaller identifiable model by rescaling the model for 𝑆̄  =  𝑆/(𝑘𝑆
𝑎𝑐𝑡𝑉0𝑀1

̄ )  and 

assuming that 𝑀 can be replaced by its steady-state value 𝑀̄𝑘 for the 𝑘-th vaccination. The 

model can then be formulated as 

𝑑𝑆̄/𝑑𝑡 =  𝑓𝑀̄𝑘
𝑒𝑥𝑝(−𝑘𝑉

𝑑𝑒𝑔
(𝑡 − 𝑡𝑘))  −  𝑘𝑆

𝑑𝑒𝑔
𝑆 



 

 

 

 
 

5 
 

ORCHESTRA has received funding from the European Union’s Horizon 2020 research and innovation programme under grant 
agreement No 101016167 

 

𝑑𝐴𝑏/𝑑𝑡 =  𝑘𝐴𝑏
𝑝𝑟𝑜𝑑

 𝑆̄  −  𝑘𝐴𝑏
𝑑𝑒𝑔

 𝐴𝑏. 

𝑓𝑀̄𝑘
= 𝑀̄𝑘/𝑀̄1 is the fold-change for steady-state memory compartment after the 𝑘-th 

vaccination. In this work, we assumed all rate parameters to be unknown and estimated them 

using the available data by neural posterior estimation. The initial concentrations for 𝑆̄ and 𝐴𝑏 

are 0, given that individuals were not infected before receiving a first vaccine dose. 

 

1.3 Available data and model fit 

Using the smaller model by Clairon et al. [2023], we fit the model to the available data using 

the amortized inference approach. In contrast to this model, we estimate all parameters and 

also allow for random effects on all parameters. 

Figure 7 shows the obtained model fit and data for five representative individuals. In total, there 

were 822 individuals of which 51 were infected before being vaccinated and 12 became 

infected within the observation period. 77% of the study population was female and 23% male 

with a median age of 48 (IQR: 37-56). Any individual that became infected was excluded from 

further analysis. For each individual four measurements of the antibody response were taken 

and most measurement time-points fall between the second and third vaccination. Antibody 

levels after the third vaccination often lie at or above the upper limit of detection.  

Given these data the model produced an appropriate fit to the data (Figure 7). The prediction 

interval shown here was produced by simulating the model with parameter sets sampled from 

the individual-specific posterior distributions. A time of larger uncertainty can be observed 

following the third vaccination, likely due to the limited amount of data and detection threshold. 

Furthermore, the neural posterior estimation already produced sufficiently good fits to the data, 

as can be seen when comparing the posterior median and empirical bayes estimate fits in 

Figure 7 and other fits not shown here. 
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1.4 Effects of covariates on the dynamics of the antibody response 

Following the assessment of the model fit, we used the obtained Empirical Bayes Estimates 

to identify relationships between parameters and different covariates. In Figure 8, we display 

the optimal parameters for a subset of the entire study population in relation to different 

covariates. Given the trendline shown, we can observe minor increases of the parameters 

determining the steady state fold-change after second and third vaccination (𝑓𝑀2
 and 𝑓𝑀3

) with 

an increase in age. On the other hand, a negative relationship between age and the parameter 

determining the antibody production rate can be seen. Otherwise, we could identify strong 

relationships between the different covariates and parameters of the smaller model by Clairon 

et al. [2023].  

  

Figure 7. Exemplary model fit for five representative individuals. The red line and red shaded area 
indicate fits obtained solely using the neural posterior estimation method. The shaded area indicates 
the 95% credible interval. In addition, we estimated the optimal parameters for each individual given 
the population parameters obtained in the inference phase and displayed the optimal parameters in 
blue (Empirical Bayes Estimates). Solid black lines indicate the upper limit of detection and dashed 
grey lines indicate the time of vaccination. 
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1.5 Discussion 

In this work, we aim to gain insights into the dynamics of the antibody response after 

vaccination against COVID-19. More specifically, we aim to identify key differences in the 

dynamics between individuals based on several features. Additionally, we want to showcase 

a novel method for parameter estimation in nonlinear mixed-effects modeling. As a basis for 

our analysis, we used an ODE model described by Clairon et al. [2023]. To describe inter-

individual heterogeneity, we employ nonlinear mixed-effects modeling and use a novel 

approach introduced by Arruda et al. [2023] for parameter estimation. 

The calibrated model could capture different dynamics of the individuals well and allowed us 

to observe relationships between covariates and the parameters of the model. These trends 

that were observed need to be further validated by incorporating them into the model and 

estimating their effect on the dynamics. Using the new parameter estimation approach, testing 

different covariate models can be done more efficiently compared to established methods like 

SAEM [Kuhn and Lavielle, 2005] or FOCEI [Wang, 2008]. As long as the underlying model 

does not change significantly, many different parameter-covariate relationships can be tested 

quickly with a comparatively low computational cost. 

Furthermore, to describe more scenarios and obtain a more holistic view of the vaccination 

process, additional complexity should be incorporated into the model, such as individuals who 

have experienced an infection before becoming vaccinated. These individuals could be 

characterized by an already existing antibody secreting cell population, which translates into 

an initial value for S that is nonzero. This would also allow us to assess whether a pre-vaccine 

infection changes more than only the initial state of the system, but also affects dynamics 

Figure 8. Relationship between parameters and covariates for 100 randomly drawn individuals and 
three parameters. The individuals were randomly drawn from the study population that did not 
experience an infection before being vaccinated. Parameter values are on log-scale. The solid black 
line in the age column shows a linear trendline. 
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through other parameters meaningfully. Additionally, until this point, we did not consider 

differences between vaccination compounds in the model or even infections that happen 

between two vaccination time points. The type of vaccination could play a major role in the 

dynamics. 

This work can aid in furthering the mechanisms governing the dynamics of the antibody 

response against COVID-19 and could allow informed decisions for vaccination strategies. 

Additionally, it may provide a dynamic vaccination model for other diseases. 

While vaccination is an effective strategy to protect from severe illness, some individuals may, 

for example, not respond to vaccination and therefore still be at risk. Other risk factors, such 

as advanced age, may also play a role, as the majority of severe COVID-19 cases occurred in 

elderly individuals. In this population, antiviral treatment is an important component to reduce 

the risk of infection and severe disease. In the following we present a novel model to predict 

the efficacy of antiviral treatment, in terms of reduction of infection and severe disease within 

nursing homes. 

 

 

Part 2: Treatment strategies to avoid residents’ isolation in nursing 

homes: modeling analysis 

Nursing homes are at risk of being afflicted by epidemics of respiratory viruses such as COVID-

19 [Smith et al., 2020, Smith et al., 2022]. In 2020, three out of four nursing homes had at least 

one resident infected by COVID-19, and 44% of deaths caused by COVID-19 are represented 

by nursing home residents. During the epidemic, in order to avoid virus transmission, nursing 

homes applied different aggressive isolation strategies, where symptomatic residents were 

isolated for long periods [Worcel et al., 2021] or all the residents were isolated when a 

symptomatic is detected [Bernadou et al., 2021]. However, these strategies had a high impact 

on physical and cognitive health for residents [Simard et al., 2020] 

Antiviral treatments may reduce incidence (and therefore transmission), risk of having severe 

disease within nursing homes [Cohen et al., 2021] as a pre- or post-exposure prophylaxis, with 

the additional benefit of reducing the need of isolation. These treatments can be highly 

effective, reducing the risk of severe disease by 70-90% when administered within the first 

week of symptom onset [Iwanami et al., 2021; Focosi et al., 2022].  

To understand the impact of antiviral treatment, a multiscale model that accounts for the effect 

of treatment at within host and between hosts scales, and also the individual contact behavior 

within nursing homes is required [Duval et al., 2018] 

In order to clarify an optimal strategy to reduce residents’ isolation, transmission and risk of 

severe disease in nursing homes by administering antiviral treatment, we developed a multi-

scale model integrating the evolution of viral load within infected individuals, a function to 
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compute to risk of severe disease or hospitalization and the risk of virus transmission that takes 

into account contact matrices within nursing homes.  

 

2.1 Viral Dynamic, Risk of severe disease and Transmission models 

In our previous work we have defined the viral dynamic model, and the transmission model 

within households as a function of the viral load (please see Deliverable 8.2). In this ongoing 

work we take similar models where we added the reduction immunity for the residents in the 

viral load dynamic, and a contact matrix in transmission to have a more realistic contacts 

behavior between individuals: 

The viral dynamic model builds on previous Influenza and SARS-CoV-2 literature [Smith & 

Perelson, 2011; Néant et al. 2020; Baccam et al., 2006], characterizing the changes in viral 

load levels over time, with treatment initiated at a given time which thereby reduces the 

production of infected viral cells. The model includes three types of cell populations: uninfected 

susceptible target cells (T), infected cells in an eclipse phase (I1), and productively infected 

cells (I2). A fraction µ of the viral particles was assumed to come from infectious virus VI, and 

the remaining viral particles (1 − µ) were assumed to come from noninfectious virus VNI. Viral 

load at time t post infection, V(t), is measured in RNA copies and is the sum of infectious and 

non-infectious viral particles. When an individual is exposed to antivirals, the dynamics of viral 

particles is altered. Assuming treatment is initiated at time, we modeled drug action through a 

reduction of the production of viruses by infected cells, with an efficacy noted ϵ, beginning at 

a given time, tx. The following set of nonlinear ordinary differential equations define the viral 

dynamic model: 

𝑑𝑇/𝑑𝑡 =  − 𝛽 𝑇𝑉1 

𝑑𝐼1/𝑑𝑡 =  𝛽 𝑇𝑉 −  𝑘 𝐼1 

𝑑𝐼2/𝑑𝑡 =  𝑘 𝐼1 − 𝛿𝐼2 − 𝜙
𝐹

𝐹 + 𝜃
𝐼2 

𝑑𝑉𝐼/𝑑𝑡 =  𝜇(1 −  𝜖𝐼𝑡≥𝑡𝑥
)𝑝𝐼2 − 𝑐𝑉𝑁𝐼 

𝑑𝑉𝑁𝐼/𝑑𝑡 = (1 − 𝜇)(1 −  𝜖𝐼𝑡≥𝑡𝑥
)𝑝𝐼2 − 𝑐𝑉𝑁𝐼 

𝑑𝐹/𝑑𝑡 = 𝐼2 −  𝑑𝑓𝐹 

As for residents we need to include the age and other risk factors that impact the viral clearance 

time, we suppose a 40% drop in immune system for residents, which is equivalent to reducing 

the viral load parameter 𝜙 𝑡𝑜 𝜙 × 0.6 for only the residents which is equivalent to approximately 

10 days delay of viral clearance time compared to the staff. 

The risk of severe disease is computed with the exponential survival model which is a function 

of the viral load and of the individual characteristic (staff or resident) to take into account the 

age and comorbidities effect of older individuals that are the residents: 
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𝑆𝑗(𝑡) = 𝑒− ∫
𝑡

0
ℎ𝑗(𝜓𝑗)𝑑𝑢   

With ℎ𝑗(𝜓𝑗) = 𝜆𝑒𝛾×1𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 + 𝜈×(𝑉𝑗(𝑢) ). The median risk of severe disease of symptomatic 

patients is fixed to 25% and hence 𝜆, 𝛾 𝑎𝑛𝑑 𝜈 are calibrated to this purpose. 

The transmission mechanism for a risky punctual contact of 5 minutes, is defined by a Power-

law model that is used to relate the non-linear relationship between the viral load V(t) to the 

risk of transmission to another individual, p(t) = 1 − exp( −m V(t)h ). The strength between 

the viral load and the overall disease transmission is denoted by the dimensionless parameter, 

m, whereas h specific the steepness of this relationship. 

To take into account the contact behavior within nursing home in the transmission, we compute 

the probability that individual i infects j, upon a contact ending at time t, including the duration 

of the contact 𝐶𝑖,𝑗(𝑡) [Duval et al., 2018] (saturated after 30 min of one contact) as following: 

𝑃𝑖,𝑗(𝑡) =  1 − ∏

𝐶𝑖,𝑗(𝑡)

𝑢=1

(1 − 𝑝𝑖(𝑢)) 

2.2 Measuring impact of antiviral treatment 

Outbreak severity can be measured by a function of infected residents within a nursing home, 

once all transmission chains have been exhausted, by the average risk of severe disease and 

by the average isolation duration within nursing homes. Transmission can occur to any other 

non-infected individuals in the nursing home if there is contact, and we assume that an 

individual can be infected only once during an outbreak (no reinfection). 

The impact of the treatment on the instantaneous transmission probability is shown in Figure 

2.1.A: if the treatment is initiated before symptoms (if an individual is a contact case) the 

transmission probability is highly impacted (green curves) compared to the transmission 

probability for the treated symptomatic individuals (orange curves). The attack rate computed 

as the proportion of the residents infected within nursing homes is the transmission endpoint. 

The risk of severe disease is averaged over all the infected patients using 𝑆𝑗(𝑡). In Figure 2.1.B 

we show the impact of the treatment in case of pre and post-symptom onset.It can be observed 

that treatment after symptom onset enhances the survival to 80% compared to not treating, 

while treating before symptom onset increases the treatment effect to 90% for avoiding severe 

disease. Finally, we suppose that if residents or staff are isolated, each individual is isolated 

10 days after symptom onset. 

Different intervention strategies are studied in this work (Figure 2): 

1) No intervention: there is no isolation and no treatment within nursing home 

2) Only symptomatic individuals are isolated: when a symptomatic individual is detected, 

the resident is isolated 0 to 3 days after symptom onset, 
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3) Only symptomatic individuals are isolated and treated: when a symptomatic individual 

is detected, the resident is isolated and treated 0 to 3 days after symptom onset, 

4) Contacts treated if positive: when a symptomatic individual is detected, they are treated 

and isolated 0 to 3 days after symptom onset and their 5 days contacts with positive 

test (PCR or Antigen test (Ang)) are treated. 

5) All contacts are treated: when a symptomatic individual is detected, they are treated 

and isolated 0 to 3 days after symptom onset and all their 5 days contacts are treated 

whether they are infected or not 

6) All residents are isolated: when a symptomatic individual is detected, all the residents 

are isolated. Isolation ends 10 days after the last symptomatic case detection. 

 

Figure 2.1. Treatment impact on transmission and risk of severe disease A. Top: Instantaneous 
transmission probability for 30 individuals without treatment (gray), in the case of treatment before 
symptom onset (green) and after symptom onset (orange). B. Avoiding severe disease function in 
time for residents in case of no treatment (red), treated before symptom (green) and treated after 
symptom (orange). 
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Figure 2.2. Different type of intervention in nursing homes from top to bottom: 1/ No intervention, 2/ 

Only symptomatic are isolated, 3/ Only symptomatic are treated and isolated 0 to 3, 4/ Treating 

symptomatic and isolated + treating their contacts with PCR positive or Ang positive, 5/ Treating 

symptomatic and isolated + treating all their contacts, 6/ all residents are isolated. 

 

2.3 Results 

We studied the multi-scale model using numerical simulation. This revealed that the model 

reproduces the kinetics observed with SARS-CoV-2, with a time to peak viral load that 

coincides with the incubation duration and is equal to 5 days on average, albeit with a large 

inter-subject variability (Figure 2.3). In this context, initiating a treatment after symptom onset, 
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hence after peak viral load in general, has only a minimal effect on viral dynamics and 

shedding. Conversely, initiating a treatment before symptom onset, which is in general the 

case of individual contact cases, can have a dramatic effect on viral load, reducing peak viral 

load and the duration of viral shedding. 

 

 

Figure 2.3. Viral dynamics and antiviral treatment. A. Individual viral dynamic profiles predicted by 
the model in 30 individuals that are either left untreated (grey), treated within 5 days after symptom 
onset (orange), or treated within 5 days after infection (green), and the model assumes that a mean 
incubation period of 5 days, and a mean treatment antiviral efficacy of 99%. B. Distribution of the 
peak viral load predicted by the model. C. Distribution of the time to peak viral load predicted by the 
model. The peak viral load occurs at day 5 post infection on average, and coincides with the onset 
of symptom. Post-exposure prophylaxis (green) can dramatically reduce both peak viral load and 
time to peak, in the other hand treatment initiation after symptom onset (orange) has not much effect 
on peak viral load. 
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We simulate 1000 nursing homes of size 200 of which 100 are residents and 100 are staff. 

The initial R0 is fixed to a value of 4 independent of the intervention strategy. We assumed 

that 50% of all nursing home residents and staff remain asymptomatic throughout the course 

of the infection. 

Figure 2.4 depicts the attack rates in residents considering different intervention strategies 

displayed in Figure 2.2. With an R0 fixed to a value of 4, the equivalent attack rate in the 

nursing home for the residents is 39%. When only the symptomatic are isolated, this attack 

rate is not highly impacted (intervention effectiveness =11% compared to no intervention) as 

most of transmission has already occurred before the time of symptom onset. Similar results 

can be observed for the strategy of treating symptomatic individuals as in our study we have 

supposed that for all intervention strategies, we isolated all the symptomatic cases 

independent of whether they were treated or not. So, the treatment does not have any effect 

on the transmission for this strategy. However, treating symptomatic cases impacts the 

average risk of severe disease within nursing homes as observed in Figure 5. The intervention 

effectiveness on risk of severe disease including the symptomatic treatment is approximately 

48% compared to 11% if no treatment has been allocated.  

Considering more aggressive intervention strategies where also the 5 days contacts of the 

symptomatic are treated, three testing strategies are studied: Ang test (Antigen test), PCR test, 

no test where even not infected are treated in prophylaxis.  

As the PCR test is more sensitive than the antigen test, we can detect infected individuals 

contacts earlier (before their viral peak time) than for Ang test which induces a treatment 

effectiveness on transmission of 66% compared to 52% for Ang testing strategy. Treatment 

effectiveness on risk of severe disease for both these strategies are respectively 76% and 90% 

(Figure 5). The average risk of severe disease is highly impacted as the treatment not only 

reduces the risk of hospitalization of the infected individuals but also avoids new infections and 

hence new individuals having risk of severe disease. 

Treating all the contacts, whether they are infected or not, increases treatment effectiveness 

on transmission to 75% (Figure 4) as some of these individuals are treated prophylactically, 

which improves the effectiveness on risk of hospitalization to 94% (Figure 5). An effectiveness 

on transmission of 85% can be achieved for the strategy of isolating all the residents as soon 

as symptomatic cases are detected. However, this latter strategy induces a high impact on 

residents’ isolation (Figure 6): an average of 37 days of isolation over the 1000 nursing homes 

of is computed compared to less than 1 to 3 days for any other intervention strategy, with 

minimal isolation duration for the strategies where contacts are treated (less than 1 day), which 

leads to an effectiveness of 95% on isolation duration relative to total isolation.  
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Figure 2.4. Impact of different intervention strategies on the transmission: attack rates in residents 

 

 

Figure 2.5. Impact of different intervention strategies on risk of severe disease in residents 
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Figure 2.6. Impact of different intervention strategies on isolation duration average  
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2.4 Discussion 

High transmission rates of acute respiratory viruses are a major issue in nursing homes as the 

risk of severe disease and death are much higher than that of the general population. This has 

led to drastic isolation interventions of nursing home inhabitants. In our previous work, we have 

developed a multi-scale modeling approach that follows viral dynamics at the individual level 

and relates it to the risk of transmission within nursing homes. In this work we have integrated 

a more realistic contact behavior between individuals in the transmission model, and a survival 

model to describe the risk of having a severe disease taking into account the viral load 

dynamic. In utilizing these models, we could predict the effectiveness of antiviral strategies 

according to key factors, in particular the virus contagiousness level (R0 value), the nursing 

homes size (number of residents and staff), contact behavior modification… 

Our results suggest that in the typical conditions of SARS-CoV-2 pre-Omicron Variants, i.e., a 

peak viral load that coincides with symptom onset and occurs about five days after infection, 

treatment strategies targeting a symptomatic index case will be poorly effective at reducing 

transmission but may lead to an effectiveness on risk of severe disease of approximately 50%. 

In general, our results show that when symptomatic cases are detected, there is a large benefit 

in treating all their contacts, regardless of their infection status. This strategy can achieve 

effectiveness of 75% on transmission and 94% on risk of severe disease. We also find that the 

effectiveness on transmission and risk of severe disease for the strategy of treating all the 

symptomatic contacts positive to PCR or Ang show high efficacy that are quite similar to 

treating all the contacts without testing. All the results with PCR and Ang are almost equivalent 

to the strategy of all the contacts being treated, even the not infected individuals. Isolating all 

the residents as soon as symptomatic individuals are detected could be an appropriate 

intervention strategy both to prevent transmission and risk of severe disease. However, it may 

negatively impact physical and cognitive health of the residents. Treating symptomatic and 

their PCR positive contacts could be a reasonable strategy to reduce 95% of average isolation 

duration relative to all patients' isolation strategy. 

In conclusion, our model can be used to quantify and anticipate the clinical effectiveness of 

antiviral treatment strategies against acute respiratory viruses in nursing homes. It provides a 

novel understanding on the conditions that need to be met, at the pharmacological, virological 

and behavioral level and can guide interventions aiming to reduce disease burden during a 

viral pandemic and avoid drastic interventions such as long-term isolation of residents. 
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