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Executive summary 

Different nations, states and cities implemented different interventions, ranging from voluntary 

physical distancing to a mandatory shutdown, to slow down the spread of SARS-CoV-2 and to 

avoid an overload of the healthcare systems. However, the effectiveness of these interventions 

is still unclear and there are contradicting findings. The objective of this report is to summarize 

the available knowledge about the effects of non-pharmaceutical intervention (NPI) and to 

illustrate the prototype of the model-based data analysis pipeline developed in ORCHESTRA. 

This deliverable provides a meta-analysis of dozens of scientific publications reporting the 

effect of different NPIs. To understand the impact of individual NPIs on different outcome 

variables (e.g., mobility and effective reproduction number), various categories are considered, 

ranging from general lockdown over school closure to the availability of paid sick leave. 

Furthermore, the deliverable provides a description of the established modeling pipeline and 

the results of its application to data of a representative population cohort which is part of 

ORCHESTRA. 

Core content 

Non-pharmacological interventions are used worldwide to slow down the spread of SARS-

CoV-2. However, in many cases the intended goals were not achieved, and infection numbers 

stayed much higher than expected. A potential reason is that the effectiveness of NPIs is still 

partially unknown. 

To address this issue, ORCHESTRA will provide a continuous assessment of the effects of 

NPIs on different OUTCOME measures. This will be based on the assessment of scientific 

publications, as well as a detailed analysis of representative population cohorts. Here, we 

report the results of the first four months, our conclusions and the next steps.  
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1. Meta-analysis of published reports on the impact of non-

pharmaceutical interventions 

To obtain a comprehensive overview about the available information on the effects of NPIs for 

SARS-CoV-2, a team of PostDocs, PhD students, and student assistants screened the 

scientific literature and curated selected publications. The process is visually outlined in 

Figure 1. 

To ensure the reliability of our meta-analysis, we implemented selection criteria for the 

inclusion of scientific reports. Most importantly, we focused on peer-reviewed publications 

written in English. Yet, to ensure that also important recent results are included, which is 

essential as the effect of interventions might be time-dependent, we also considered high-

quality preprints (as judged by the curators). For the search we used PubMed, MedRxiv, 

BioRxiv and Google. Furthermore, members of ORCHESTRA were asked to share 

manuscripts which they consider relevant. 

The analysis focused on studies in the EU (41%), but also manuscripts reporting findings for 

the US, China, the UK and others (59%) are included.  The full text articles were read by at 

least two individuals to ensure a reliable information extraction. Key manuscripts considered 

in the meta-analysis are included in the list of references.  

The information of NPIs reported in each publication was included in a central database which 

will be included in the ORCHESTRA portal. This included the reported effect of a NPI (with 

confidence intervals) on different outcome variables. As it was initially not clear on which NPIs 

and outcome variables we would find information, the structure of this database was 

dynamically refined. This allowed us to include less common outcome variables such as the 

need for ICU beds. For the generation of this report some categories were collapsed to improve 

interpretability. 

The results of the initial meta-analysis, which includes 34 manuscripts, is provided in Figure 2. 

As expected, there is a substantial variability between studies. There are various potential 

reasons, including the use of different statistical tools and computational models for data 

analysis. Yet, in particular for commonly implemented measures such as general lockdown 

and school closure, there is a surprisingly good agreement and a clear indication of a strong 

effect. 

The meta-analysis will be continuously extended during the course of the ORCHESTRA 

project. 
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Figure 1. Visual outline of the workflow used to generate the database. 
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Figure 2a. Part a of the results of the meta-analysis. Dark blue points indicate the average reported effects, 

while light blue points indicate the effects reported in individual studies. The manuscripts included in the meta-

analysis are provided in a separate reference list. 
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Figure 2b. Part b of the results of the meta-analysis. Dark blue points indicate the average reported effects, while 

light blue points indicate the effects reported in individual studies 
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Figure 2c. Part c of the results of the meta-analysis. Dark blue points indicate the average reported effects, while 

light blue points indicate the effects reported in individual studies. 
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Figure 2d. Part d of the results of the meta-analysis. Dark blue points indicate the average reported effects, 

while light blue points indicate the effects reported in individual studies. 
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2. Description of established model-based analysis pipeline for 

population cohorts 

To assess the impact of NPI in the representative population cohorts included in 

ORCHESTRA, we will use (1) established compartment models and (2) novel individual-based 

models. The models will specifically formalize the transmission process accounting for the 

impact of various factors, including intervention measures, level of (dis)information about the 

pandemic and economic activity. In contrast to most studies, we not only integrate publicly 

available numbers on new cases, but also the results of antibody testing and hospitalization 

data. 

In the first three months, we focused on the compartment models already developed by HMGU 

and established a reusable parameter estimation pipeline. The pipeline estimates the effects 

of NPIs from different available datasets and accounts for prior knowledge (collected, e.g., in 

the course of the meta-analysis). In Section 2.1 and 2.2 the different components of the 

pipeline are described, while in Section 2.3 we report the results of its application to the data 

from the representative population cohort KoCo19 organized by the Ludwig-Maximilian-

Universität (LMU) which is part of ORCHESTRA. 

2.1. Formulation of mathematical model 

We developed a compartment model which consists of a system of ordinary differential 

equations (ODEs). To provide a detailed view of the epidemic evolution and integrate not only 

information from the representative cohort studies but also information about positive PCR 

tests and hospital count data, a large number of compartments is considered. The rough 

Figure 3. Illness phases captured in the compartment model. 
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structure of the model is illustrated in Figure 3, including information about the assumed 

infectiousness of different groups of individuals. 

To model the testing process, each state is duplicated into a tested-positive and non-tested-

positive variant resulting in two parallel tracks the illness can progress onto (Figure 4). The 

rates at which individuals transit from the untested to the tested branch encode the efficacy of 

the testing system set up by the healthcare authorities, while transitions from the tested to the 

untested branch are not allowed. The test rates depend on the illness phase: in particular, the 

test rate for asymptomatic and presymptomatic individuals is a measure of contract tracing 

effectiveness. Figure 4 also shows that each illness phase can be split into several sub-states 

so that the transition times between different phases are Erlang-distributed. This is due to the 

fact that some important times related to the COVID-19 disease (such as the incubation time) 

have been shown to be approximately log-normal- or Weibull-distributed and thus cannot be 

reasonably modeled by an exponential distribution (which is disregarded by almost all studies). 

 

Figure 4. Modeling of the testing process. 

Since the policies set by the government and the healthcare authorities vary in response to the 

evolution of the epidemic, the model parameters must depend on time. Here, we choose three 

parameters to be time-dependent: the test rates for symptomatic and asymptomatic individuals 

respectively and the fractional reduction in the number of infectious contacts due to 

government restrictions such as the lockdown. Such time dependency is modeled by splines 

with an inter-node distance fixed at 2 weeks (in order to reduce the required computational 

resources needed). Moreover, the evolution of the test rates has also a week-periodic 

component in order to account for the lower-case counts around the weekends that has been 

observed in Germany and elsewhere in the world. 

2.2. Computational modeling pipeline 

We established a reusable computation pipeline to automate the fitting process. This will 

facilitate the continuous update of results throughout the runtime of ORCHESTRA. 

The compartment model is encoded in the Systems Biology Markup language (SBML) (Hucka 
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et al., 2003), a widely used standard in the systems biology community. This standard 

facilitates the reproduction of the results in various different tools and adds to the reusability. 

To construct the dataset used for fitting, we implemented scripts for the extraction of the 

information from the representative cohort studies. These scripts are already working for the 

representative cohort by the LMU and the general situation in Germany (as reported by the 

Robert Koch-Institute1). As data becomes available via the ORCHESTRA platform, these 

scripts will be updated. Furthermore, we extracted priors on different process parameters (e.g., 

transition rate between compartments) from the literature. The processed information is stored 

in the Parameter Estimation Table format (PEtab) (Schmiester et al., 2021), a standard format 

for the formulation of estimation problems.  

Using the SBML models and the data in PEtab format, we perform parameter estimation in the 

Python Parameter Estimation Toolbox (pyPESTO). This tool offers a broad spectrum of 

functionalities, including advanced nonlinear optimization, profile calculation, sampling, and 

ensemble uncertainty analysis. In the current phase, we are using the optimization and the 

sampling capabilities to infer the unknown process parameters, including the effects of different 

interventions. The observation model for the case counts is negative binomial since we have 

observed such data to be overdispersed; a normal noise model is used for the remaining data.  

As the parameter estimation is computationally demanding, we wrote scripts to easily deploy 

it on the local compute cluster accessible to members of HMGU. This allows parallelization on 

a large number of cores. Yet, as sampling is a sequential process, individual runs can still take 

weeks, and we are currently exploring ways to accelerate this. The planned use of the HPC 

infrastructures at CIENCA and HLRS will be very useful. 

2.3. Results for the computational modeling pipeline 

For a first application of the pipeline, we consider the data from the prospective COVID-19 

Cohort Munich (KoCo19) for the first wave.  KoCo19 is organized by the LMU and is currently 

monitoring nearly 3000 households in the Munich city area [Radon et al., 2020]. At regular 

intervals blood samples for each household member are gathered and tested for several 

indicators of the presence of antibodies to SARS-CoV-2 [Olbrich et al., 2021]. This data is used 

to impute the lifetime prevalence of COVID-19 in the general population, which due to the 

potentially large number of asymptomatic cases is impossible to recover from the case counts 

released by the national health authorities. In addition to the blood tests, study participants are 

also asked to fill in questionnaires about lifestyle and clinical history, which are then used to 

investigate potential risk factors for COVID-19 [Pritsch et al., 2021].  

We have selected KoCo19 for the initial assessment as we already have access to these data. 

The proposed model has been fitted against several data sources describing the evolution of 

 
1COVID-19 dashboard of the Robert Koch-Institute: 

https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4 
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the epidemic in Munich: the new case and death counts reported by the RKI; the number of 

symptom onsets reported to the RKI (these are often overlooked but are easily integrated in 

our model due to the explicit modeling of the testing process); the number of hospital beds 

occupied by COVID-19 patients, distinguishing ward and ICU; the prevalence estimates 

produced by the KoCo19 project. 

Graphic representations are used to illustrate our preliminary results. As can be seen in 

Figure 5, our model is able to fit the data, up to the weekend-related oscillations. However, as 

shown in Figure 6, the uncertainty in the underlying model dynamics remains large. Figure 7 

shows the inverses of the time-dependent test rates and indicates a clear improvement (up to 

the relaxation of government restrictions) which is associated with the increased testing 

capabilities and contract tracing. Another way to visualize this quantity is by plotting the fraction 

of infected individuals that actually gets reported to the healthcare authorities, as shown in 

Figure 8.  

For the assessment of the effect of NPIs, we will in the future study the fractional reduction in 

the disease transmission compared to the start of the epidemic. Preliminary results for this for 

KoCo19 are depicted in Figure 9. The model is not only able to clearly capture the drop in 

infectiousness due to restrictions enforced from the beginning of March, but also an uptick in 

disease transmission after the restrictions have been lifted. 

    

Figure 5. Fit of the epidemic data by the compartment model. The solid line corresponds to the most probable 

trajectory encountered during MCMC sampling, while the bands show the measurement noise for such a 

trajectory. 
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Figure 6. Time evolution of the underlying illness state. Solid line is the median of the posterior distribution, while 

the bands correspond to the 85/90/95% Bayesian CIs. 



 

 

 

 
 

15 
 

ORCHESTRA has received funding from the European Union’s Horizon 2020  research and innovation programme under grant 
agreement No 101016167 

 

 
Figure 7. Time evolution of the test rate. Solid line is the median of the posterior distribution, while the bands 

correspond to the 85/90% Bayesian CIs. 

 

 
Figure 8. Probability that an infected individual is eventually reported to the RKI. Solid line is the median of the 

posterior distribution, while the bands correspond to the 90% Bayesian CIs. 

Figure 9. Fractional reduction of disease transmission due to government restrictions. The plot shows the relative 

reduction compared to the number of contacts at baseline. Solid line is the median of the posterior distribution, 

while the bands correspond to the 85/90/95% Bayesian CIs. 
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3. Conclusions and next steps 

The preliminary results of the meta-analysis and computational modelling provide already 

several interesting results. In particular, we found that the effect sizes of non-pharmaceutical 

interventions reported in different studies widely differ. While a certain level of difference is 

expected, due to slight differences in the implementations of rules in different countries and 

different baseline situations, the magnitude was still surprising. In a next step, we will plan to 

explore how this depends on the methods used to assess the effect – and more importantly – 

on the time point of the intervention and socio-economic indicators in the region. 

For the computational modelling, a key result is the demonstration of the feasibility of a joint 

reconstruction of testing and infection rates from a combined set of case reports, clinic usage 

and seroprevalence data. Our model estimates that the effective rate with which infectious 

individuals are detected by PCR testing in Munich, Germany was improved substantially 

between beginning and end of March 2020 and levelled off afterwards. The resulting fraction 

of infectious individuals which were reported changed substantially over this time interval. The 

model estimates that at the beginning of March only 10-40% (90% CI) of infected individuals 

were reported, while in April and May the fraction was 25-50% (90% CI). The largest 

contribution is the increase in the detection probability for asymptomatic cases, which jumps 

from 0-10% (90% CI) to 15-40% (90% CI). For the time-dependent infection rate, the model 

estimates a substantial drop from the beginning of March. Interestingly, we found that the 

correlation of the parameters for the different splines is rather low, hence, testing and infection 

rates can be deconvoluted if the case reports and representative data are available. In a next 

step, we hope to apply the proposed approach to representative data collected by cohorts in 

other countries. 
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